
©	RANDORISEC	-	2017		 Version	1.0	–	March	28,	2017					c	

	

	

	
	
	
	
	
	
	
	
	

	
	

PENTEST	REPORT	
	
	
	
	
	
	
	
	
	
	
	

TLP:WHITE	
This	 report	 is	 classified	 TLP:WHITE.	 TLP:WHITE	 is	 information	 that	 is	 for	 public,	 unrestricted	
dissemination,	publication,	web-posting	or	broadcast.	Any	member	of	the	Information	Exchange	may	
publish	the	information,	subject	to	copyright.	
	
	
	

	
	
	



	 TheHive	Pentest	Report	
	

	
CLASSIFICATION	:	PUBLIC	/	TLP	:	WHITE		 Page	1	of	20					c	

		
	

1.	Executive	Summary	
TheHive1	is	a	free	and	open-source	security	incident	response	platform.	It	relies	on	Cortex2	to	analyze	

observables	(IP,	email	addresses,	domain	names,	etc…).	Both	tools	were	designed	and	developed	by	

TheHive	Project3.	

	

A	penetration	test,	which	followed	the	WAHH4	methodology,	was	performed	by	RANDORISEC	to	assess	

the	security	level	of	the	platform.	We	tested	TheHive	Buckfast	0	(version	2.10.0)	and	Cortex	version	

1.0.0.	

	

Positive	Points	

We	were	 unable	 to	 access	 the	web	 application	 anonymously.	We	were	 also	 unable	 to	 elevate	 our	

privileges	without	resorting	to	social	engineering	tricks.	

	

Negative	Points	

We	have	identified	a	critical	vulnerability	(Stored	Cross-Site	Scripting)	along	with	a	few	less	critical	ones	

(Reflected	Cross-Site	Scripting,	Vertical	privilege	escalation,	Concurrent	session	allowed,	No	account	

lockout	policy,	No	password	policy,	Information	leakage	and	Cross-Site	Request	Forgery).	

	

By	exploiting	these	vulnerabilities,	an	attacker	could	trick	users	into	executing	malicious	code	in	their	

browsers	and/or	 computers	or	 try	 to	brute-force	 the	authentication	mechanism.	This	 could	 lead	 to	

illegitimate	 access	 or	 privilege	 escalation.	 The	 only	 critical	 vulnerability	 we	 found	 does	 not	 come	

directly	 from	TheHive	 code	but	 from	a	dependency.	The	developers	have	been	made	aware	of	 the	

vulnerabilities	prior	to	the	publication	of	this	report	according	to	the	responsible	disclosure	policy5.	

They	assured	RANDORISEC	 that	most	 if	 not	 all	 vulnerabilities	would	be	 fixed	 in	Buckfast	 2	 (version	

2.10.2),	due	in	April	2017.		

We	also	found	some	low	severity	vulnerabilities.	They	are	mainly	located	in	the	access	part	(session	

handling	and	authentication)	and	should	not	be	very	challenging	to	fix.	

																																																													
	
1	https://github.com/CERT-BDF/TheHive		
2	https://github.com/CERT-BDF/Cortex		
3	https://thehive-project.org/		
4	Web	Application	Hacker’s	Handbook.	
5	https://vuls.cert.org/confluence/pages/viewpage.action?pageId=4718642	



	 TheHive	Pentest	Report	
	

	
CLASSIFICATION	:	PUBLIC	/	TLP	:	WHITE		 Page	2	of	20					c	

		
	

Content	
1.	Executive	Summary	_______________________________________________________________	 1	
1.	Introduction	 ____________________________________________________________________	 3	
2.	Vulnerabilities	___________________________________________________________________	 5	
3.	Recommendations	 _______________________________________________________________	 7	
4.	Detailed	findings	_________________________________________________________________	 9	
5.	Appendices	____________________________________________________________________	 18	
	
	 	



	 TheHive	Pentest	Report	
	

	
CLASSIFICATION	:	PUBLIC	/	TLP	:	WHITE		 Page	3	of	20					c	

		
	

1. Introduction	
1.1. Test	Period	and	Duration		
The	pentest	was	performed	in	4	man-days	spanning	several	weeks	starting	from	February	9,	2017	and	

ending	on	March	21,	2017.	

	

1.2. Credits	
RANDORISEC	and	Davy	Douhine,	the	company’s	CEO,	would	like	to	thank	the	following	professionals,	

listed	in	alphabetical	order,	for	their	help	performing	the	pentest	described	in	this	report:	

- Frédéric	Cikala	

- Nicolas	Mattiocco	

- Florent	Montel	

- Mohamed	Mrabah	

- Maximilano	Soler	

	

Important	Note	

RANDORISEC	and	the	pentesting	professionals	that	joined	it	for	this	pentest	have	no	contract	with	

TheHive	 Project	 and	 did	 not	 receive	 any	 compensation	 of	 any	 sort	 to	 perform	 this	 pentest.	

RANDORISEC	and	the	pentesting	professionals	listed	above	performed	this	work	on	their	free	time	

as	a	way	to	contribute	to	the	security	of	Free,	Open	Source	Software	projects.		

	
	
1.3. Perimeter	and	Methodology		

1.3.1. Target	

TheHive	 and	 Cortex	 applications	 were	 installed	 using	 the	 public	 Docker	 versions,	 following	 the	

instructions	provided	at	the	following	location:	

https://github.com/CERT-BDF/TheHive/wiki/Docker-guide---TheHive-Cortex		

	

We	performed	our	tests	on	TheHive	Buckfast	0	(version	2.10.0)	and	on	Cortex	1.0.0:	



	 TheHive	Pentest	Report	
	

	
CLASSIFICATION	:	PUBLIC	/	TLP	:	WHITE		 Page	4	of	20					c	

		
	

	
	

1.3.2. Restric@ons	

No	restrictions	were	made.	

	

1.3.3. Test	cases	

As	the	mission	we	took	upon	ourselves	was	a	pentest	and	not	an	audit,	this	report	contains	only	the	

vulnerabilities	 that	 were	 found.	 However,	 all	 the	 main	 areas	 that	 were	 checked	 are	 listed	 in	 the	

appendices	at	the	end	of	this	document.	

	

1.4. Confidentiality	
This	report	and	its	appendices	are	classified	TLP:WHITE	according	to	Trusted	Introducer’s	ISTLP	v1.16.	

	

	 	

																																																													
	
6	https://www.trusted-introducer.org/ISTLPv11.pdf		



	 TheHive	Pentest	Report	
	

	
CLASSIFICATION	:	PUBLIC	/	TLP	:	WHITE		 Page	5	of	20					c	

		
	

2. Vulnerabilities	

Severity	levels	result	from	the	combination	of	their	impact	with	their	probability	of	occurrence,	which	is	quantified	according	to	the	following	scale:	Low	(L)	
–	yellow	/	Medium	(M)	–	orange/	High	(H)	–	red.		
Note:	Only	proven	or	very	plausible	vulnerabilities	are	listed.	When	the	tests	were	not	able	to	highlight	significant	security	holes,	those	will	not	be	mentioned	
(unless	the	test	was	explicitly	part	of	the	request).	
	

Re
f.	 Title	 Target(s)	 Description	 Risk(s)	 Severity	level	

AP.1	 Stored	XSS	
	

TheHive	
Malicious	JavaScript	code	can	be	injected.	It	will	be	then	executed	on	
the	victim’s	browser.	 User	impersonation	 H	

AP.2	 Reflected	XSS	
	

TheHive	
Cortex	

Malicious	JavaScript	code	can	be	injected.	It	will	be	then	executed	on	
the	victim’s	browser.	 User	impersonation	 L	

AP.3	 Vertical	 privilege	
escalation	

	
TheHive	 An	authenticated	simple	user	can	have	access	to	some	admin	menus.	 Facilitates	session	usurpation	 L	

AP.4	 Concurrent	 sessions	allowed	
	

TheHive	 Concurrent	sessions	are	allowed	for	a	single	user.	 Facilitates	session	
usurpation	 L	

AP.5	 No	 account	 lockout	policy	

	
TheHive	 Authentication	system	can	be	brute-forced.	 Facilitates	user	

impersonation	 L	

AP.6	 No	password	policy	
	

TheHive	
As	no	password	policy	is	enforced	when	using	the	local	database	for	
storing	 user	 credentials,	 users	 can	 set	 weak	 passwords	 (e.g.:	
containing	only	one	character).	

Facilitates	user	
impersonation	 L	



	 TheHive	Pentest	Report	
	

	
CLASSIFICATION	:	PUBLIC	/	TLP	:	WHITE		 Page	6	of	20					c	

		
	

Re
f.	 Title	 Target(s)	 Description	 Risk(s)	 Severity	level	

AP.7	 Information	leakage	
	

TheHive	
Information	 such	 as	 installed	 software	 versions	 (TheHive,	
ElasticSearch)	is	publically	available.	 Sensitive	info	leak	 L	

AP.8	 CSRF	
	

TheHive	
As	 no	 anti-CSRF	 tokens	 are	 used,	 TheHive	 is	 vulnerable	 to	 CSRF	
attacks.	 Illegitimate	access	 L	



	 TheHive	Pentest	Report	
	

	
CLASSIFICATION	:	PUBLIC	/	TLP	:	WHITE		 Page	7	of	20					c	

		
	

3. Recommendations	
Ac

tio
n	

Re
f.	

Severity	 Target(s)	 Improvement	Suggestions	 Difficulty	

1	 AP.1	
AP.2	

H	 TheHive	
Cortex	

If	possible,	use	a	white	list	at	the	application	level	by	defining	the	expected	characters	rather	
than	refusing	the	dangerous	ones.	
	
If	that’s	not	a	possibility,	the	application	should	filter	meta-characters	from	user	input.	When	
performing	input	validation,	consider	all	potentially	relevant	properties,	including	length,	type	
of	 input,	the	full	range	of	acceptable	values,	missing	or	extra	 inputs,	syntax,	and	consistency	
across	related	fields,	and	conformance	to	business	rules.	

3	

2	 AP.3	 L	 TheHive	 Deny	access	to	admin	pages	to	non-admin	users.	 2	

3	 AP.4	 L	 TheHive	 Only	allow	one	session	per	user	at	any	given	time.	 2	

4	 AP.5	 L	 TheHive	 Enforce	an	account	lockout	policy.	 2	

5	 AP.6	 L	 TheHive	 Implement	 a	 password	 policy	 or	 use	 LDAP	 or	 AD	 authentication	 and	 ensure	 your	 LDAP/AP	
enforces	a	password	policy.	

2	



	 TheHive	Pentest	Report	
	

	
CLASSIFICATION	:	PUBLIC	/	TLP	:	WHITE		 Page	8	of	20					c	

		
	

Ac
tio

n	

Re
f.	

Severity	 Target(s)	 Improvement	Suggestions	 Difficulty	

6	 AP.7	 L	 TheHive	 Deny	access	to	potentially	sensitive	information	to	anonymous,	non-authenticated	users.	 2	

7	 AP.8	 L	 TheHive	 Implement	anti-CSRF	tokens.	 2	



	 TheHive	Pentest	Report	
	

	
CLASSIFICATION	:	PUBLIC	/	TLP	:	WHITE		 Page	9	of	20					c	

		
	

4. Detailed	findings	

4.1. AP.1	-	Stored	XSS	
TheHive	is	vulnerable	to	two	HTML	and	JavaScript	stored	injections	also	known	as	Stored	Cross-Site	
Scripting	 vulnerabilities.	 They	 could	 be	 used	 by	 authenticated	 users	 to	 elevate	 their	 privilege	 by	
hijacking	an	admin’s	session	for	example.	
	
The	vulnerabilities	are	located	in	the	Observables	functionality	and	in	the	Observable	management.	
	
The	following	screenshot	shows	that	the	code	will	be	executed	on	the	victim’s	browser:	
	

	
	

1. First	Stored	XSS:	Observables	
	

Attack	scenario:	
	
An	authenticated	user	with	write	access	(as	defined	in	the	user	management	page)	creates	an	
observable	on	a	case	and	puts	a	malicious	JavaScript	payload	as	a	value	of	the	observable:	

	

	



	 TheHive	Pentest	Report	
	

	
CLASSIFICATION	:	PUBLIC	/	TLP	:	WHITE		 Page	10	of	20					c	

	
	

The	JavaScript	payload	used	to	test	this	vulnerability	is:	
<script>alert(/XSS/)</script> 

	
The	observable	item	is	created:	

	
	

Then,	if	a	user	that	can	access	the	case	launches	one	or	many	analyzers	(for	example	by	clicking	
on	the	Run	all	analyzers	link)	on	this	observable:	

	
The	payload	will	be	triggered:	
	

	
	
	

2. Second	Stored	XSS:	Observables	management	
	

Attack	scenario:	
	
An	authenticated	user	with	admin	access	(as	defined	in	the	user	management	page)	creates	a	
new	observable	datatype	and	puts	a	malicious	JavaScript	payload	as	the	value	of	the	datatype:	
	

	
The	JavaScript	payload	used	to	test	this	vulnerability	is:	



	 TheHive	Pentest	Report	
	

	
CLASSIFICATION	:	PUBLIC	/	TLP	:	WHITE		 Page	11	of	20					c	

	
	

"><svg onload=confirm(/XSSagain/)> 

	
The	new	observable	datatype	is	created:		

	
	
If	another	admin	user	tries	to	delete	this	new	datatype,	the	payload	will	be	triggered:	

	
	
The	response	page	shows	the	JavaScript	payload:		

	
	
Then	the	datatype	will	be	deleted.	
	
This	particular	behavior	of	“One-shot	Stored	XSS”	is	quite	interesting	as	it	could	be	used	to	attack	
admininstrators	without	leaving	evidence.	However	the	pre-requisites	to	exploit	it	(admin	access	
to	TheHive)	lower	the	risk	of	an	exploitation	using	this	particular	attack	vector.	
	
The	root	of	the	vulnerability	comes	from	the	angular-ui-notification	library	which	seems	to	trust	
inputs	as	HTML:	
https://github.com/alexcrack/angular-ui-notification	
	
An	issue	has	been	opened	on	GitHub:	
https://github.com/alexcrack/angular-ui-notification/issues/86	

	
Targets	 Risk(s)	 Recommendation	 Severity	
TheHive	 User	impersonation	 If	 possible,	 use	 a	white	 list	 at	 the	

application	 level	 by	 defining	 the	
expected	 characters	 rather	 than	
refusing	the	dangerous	ones.	
	
If	 that’s	 not	 a	 possibility,	 the	
application	 should	 filter	 meta-
characters	 from	user	 input.	When	

High	



	 TheHive	Pentest	Report	
	

	
CLASSIFICATION	:	PUBLIC	/	TLP	:	WHITE		 Page	12	of	20					c	

	
	

performing	 input	 validation,	
consider	 all	 potentially	 relevant	
properties,	 including	 length,	 type	
of	 input,	 the	 full	 range	 of	
acceptable	values,	missing	or	extra	
inputs,	 syntax,	 and	 consistency	
across	 related	 fields,	 and	
conformance	to	business	rules.	

4.2. AP.2	-	Reflected	XSS	
TheHive	and	Cortex	are	vulnerable	to	many	HTML	and	JavaScript	stored	 injections	also	known	as	
Reflected	Cross-Site	Scripting	vulnerabilities.	They	could	be	used	by	authenticated	users	to	elevate	
their	 privileges	 by	 hijacking	 an	 admin’s	 session	 or	 by	 anonymous	 users	 to	 impersonate	 an	
authenticated	user’s	session	for	example.	
	
The	vulnerabilities	are	 located	 in	 the	new	analysis	 functionality	 for	Cortex	and	 in	 the	handling	of	
error	messages	at	TheHive’s	level.	However	the	latest	is	very	unlikely	as	it	needs	Internet	Explorer	11	
with	compatibility	mode	enabled.	
	

1. Reflected	XSS	in	Cortex	
	

Attack	scenario:	
	
A	user	with	access	to	Cortex7	starts	a	new	analysis	and	put	a	malicious	JavaScript	payload	in	the	
Data	field:	

	

																																																													
	
7	Please	note	that	Cortex	does	not	use	any	kind	of	authentication	and	must	not	exposed	on	public	networks.	



	 TheHive	Pentest	Report	
	

	
CLASSIFICATION	:	PUBLIC	/	TLP	:	WHITE		 Page	13	of	20					c	

	
	

	
The	JavaScript	payload	used	to	validate	the	vulnerability	is:	
<script>alert(/XSS/)</script> 

	
The	following	screenshot	shows	that	the	code	is	executed:	

	
	
An	excerpt	of	the	response	page	showing	the	JavaScript	payload	is	shown	below:		

	
	

2. Reflected	XSS	in	TheHive	
	
Attack	scenario:	
	

An	 anonymous	 user	 sends	 a	 link	 containing	 a	 JavaScript	 payload	 (or	 a	 link	 to	 it)	 like	 the	
following:	
http://1.1.1.8:8080/api/login?<script>alert("TheHive_vulnerable_to_XSS_;)")</script> 

	
If	opened,	the	code	is	executed:	

	



	 TheHive	Pentest	Report	
	

	
CLASSIFICATION	:	PUBLIC	/	TLP	:	WHITE		 Page	14	of	20					c	

	
	

	
However,	 the	 response	page	states	 that	 the	content	 is	not	HTML	 (but	“text/plain”)	 so	an	
exploitation	using	this	attack	vector	is	very	unlikely	as	the	victim	has	to	run	an	old	version	of	
Internet	Explorer	or	Internet	Explorer	11	with	compatibility	mode	enabled.	

	
Root	of	the	vulnerability	comes	from	the	angular-ui-notification	library	which	seems	to	trust	
inputs	as	HTML:	
https://github.com/alexcrack/angular-ui-notification	

	
An	issue	has	been	opened	on	GitHub:	
https://github.com/alexcrack/angular-ui-notification/issues/86	

	
Targets	 Risk(s)	 Recommendation	 Severity	
TheHive	

Cortex	

User	impersonation	 If	 possible,	 use	 a	 white	 list	 at	 the	
application	 level	 by	 defining	 the	
expected	 characters	 rather	 than	
refusing	the	dangerous	ones.	
	
If	that’s	not	a	possibility,	the	application	
should	filter	meta-characters	from	user	
input.	 When	 performing	 input	
validation,	 consider	 all	 potentially	
relevant	 properties,	 including	 length,	
type	 of	 input,	 the	 full	 range	 of	
acceptable	 values,	 missing	 or	 extra	
inputs,	 syntax,	 and	 consistency	 across	
related	 fields,	 and	 conformance	 to	
business	rules.	

Low	

4.3. AP3	-	Vertical	privilege	escalation	
An	authenticated	user	with	read-only	access	can	use	admin	functionality	and	list	users	created	in	the	

database.	

Here	is	a	screenshot	of	a	request,	asking	to	list	the	users,	and	the	response:	

	



	 TheHive	Pentest	Report	
	

	
CLASSIFICATION	:	PUBLIC	/	TLP	:	WHITE		 Page	15	of	20					c	

	
	

The	used	request	is:	

POST /api/user/_search?range=0-10 HTTP/1.1 
Host: thehive.randorisec.fr:8080 
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.12; rv:51.0) Gecko/20100101 
Firefox/51.0 
Accept: application/json, text/plain, */* 
Accept-Language: es-ES,es;q=0.8,en-US;q=0.5,en;q=0.3 
Referer: http://thehive.randorisec.fr:8080/index.html 
Content-Type: application/json;charset=utf-8 
Content-Length: 22 
Cookie: PLAY_SESSION=6b5415864c48577fc69186629e5bcf1f7b40b57c-
username=maxi2&expire=1489027489081 
Connection: close 
 
{"query":{"_any":"*"}}	

A	malicious	user	could	use	this	to	list	the	other	users	and	then	try	to	discover	their	passwords.	

Targets	 Risk(s)	 Recommendation	 Severity	
TheHive	 Facilitates	

session	
usurpation	

Deny	 access	 to	 admin	 pages	 to	 non-
admin	users.	 Low	

4.4. AP.4	-	Concurrent	sessions	allowed	
Concurrent	sessions	are	allowed.	

If	an	attacker	finds	a	way	to	hijack	a	session,	it	could	be	unnoticed	by	the	legitimate	user.		

Targets	 Risk(s)	 Recommendation	 Severity	
TheHive	 Facilitates	

session	
usurpation	

Only	allow	one	session	per	user	at	any	
given	time.	 Low	

4.5. AP.5	-	No	account	lockout	policy		
An	 attacker	 could	 brute-force	 the	 authentication	 system	without	 being	 stopped	 or	 even	 slowed	

down.	

Here	is	a	screenshot	showing	a	brute-force	of	1000	requests	against	the	login	page:	

	



	 TheHive	Pentest	Report	
	

	
CLASSIFICATION	:	PUBLIC	/	TLP	:	WHITE		 Page	16	of	20					c	

	
	

With	this	issue	an	attacker	could	try	to	discover	a	user’s	password.	

Targets	 Risk(s)	 Recommendation	 Severity	
TheHive	 Facilitates	

session	
usurpation	

Enforce	an	account	lockout	policy.	
Low	

4.6. AP.6	-	No	password	policy	
No	password	policy	is	enforced	in	TheHive	when	using	the	local	database	for	storing	user	credentials.	

Users	 can	 thus	 set	 weak	 passwords	 (e.g.:	 containing	 only	 one	 character)	 when	 changing	 their	

password.		

This	could	help	an	attacker	find	valid	credentials.	

Targets	 Risk(s)	 Recommendation	 Severity	
TheHive	 Facilitates	

session	
usurpation	

Implement	 a	 password	 policy	 or	 use	
LDAP	or	AD	authentication	and	ensure	
your	 LDAP/AP	 enforces	 a	 password	
policy.	

Low	

	

4.7. AP.7	-	Information	leakage	
Information	such	as	installed	software	versions	(TheHive,	ElasticSearch)	is	publicly	available.	

Here	is	a	screenshot	showing	an	anonymous	request	and	the	response	with	the	version	information:	

	

This	could	help	an	attacker	in	their	reconnaissance	phase.	

	

Targets	 Risk(s)	 Recommendation	 Severity	
TheHive	 Facilitates	

session	
usurpation	

Deny	 access	 to	 info	 to	 anonymous,	
non-authenticated	users.	 Low	



	 TheHive	Pentest	Report	
	

	
CLASSIFICATION	:	PUBLIC	/	TLP	:	WHITE		 Page	17	of	20					c	

	
	

	

4.8. AP.8	-	CSRF	(Cross	Site	Request	Forgery)	
As	no	anti-CSRF	tokens	are	used,	TheHive	is	vulnerable	to	CSRF	attacks.	

Here	is	a	screenshot	showing	an	authenticated	request,	without	anti-CSRF	token,	sent	to	create	a	

user:	

	

By	using	social	engineering	tricks	(or	a	stored	XSS)	an	attacker	could	trick	an	admin	to	launch	the	

following	request	that	will	create	a	user	and	grant	illegitimate	access:	

<html> 

<script> 

function jsonreq() { 

var xmlhttp = new XMLHttpRequest(); 

xmlhttp.withCredentials = true; 

xmlhttp.open("POST","http://thehive.randorisec.fr:8080/api/user", true); 

xmlhttp.setRequestHeader("Content-Type","application/json"); 

xmlhttp.send('{"roles":["read","write","admin"],"login":"hacker11","name":"hacker1

1 hakcker11","password":"hacker4"}'); 

} 

jsonreq(); 

</script> 

</html>	

	

However,	this	behavior	is	prohibited	by	modern	browsers	and	the	Same-origin	policy	(SOP).	

Nonetheless,	 this	 vulnerability	 should	 been	 taken	 in	 consideration	 as	 a	 loosely	 configured	 CORS	

(Cross-Origin	Resource	Sharing)	policy	could	increase	the	probability	of	such	attack.	

	

Targets	 Risk(s)	 Recommendation	 Severity	
TheHive	 Facilitates	 session	

usurpation	
Implement	anti-CSRF	tokens.	

Low	

	



	 TheHive	Pentest	Report	
	

	
CLASSIFICATION	:	PUBLIC	/	TLP	:	WHITE		 Page	18	of	20					c	

	
	

5. Appendices	

5.1	WAHH	checks	
	

Recon	and	analysis	 checked	?	 vuln	
Map	visible	content	 x	 		
Discover	hidden	&	default	content	 x	 		
Test	for	debug	parameters	 x	 		
Identify	data	entry	points	 x	 		
Identify	the	technologies	used	 x	 		
Map	the	attack	surface	 x	 		

	

Test	handling	of	access	 checked	?	 vuln	
Authentication	 x	 		
Test	password	quality	rules	 x	 #AP.6	
Test	for	username	enumeration	 x	 		
Test	resilience	to	password	guessing	 x	 #AP.5	
Test	any	account	recovery	function	 x	 		
Test	any	"remember	me"	function	 x	 		
Test	any	impersonation	function	 x	 		
Test	username	uniqueness	 x	 		
Check	for	unsafe	distribution	of	credentials	 x	 		
Test	for	fail-open	conditions	 x	 		
Test	any	multi-stage	mechanisms	 x	 		
Session	handling	 x	 #AP.4	
Test	tokens	for	meaning	 x	 		
Test	tokens	for	predictability	 x	 		
Check	for	insecure	transmission	of	tokens	 x	 		
Check	for	disclosure	of	tokens	in	logs	 x	 		
Check	mapping	of	tokens	to	sessions	 x	 		
Check	session	termination	 x	 		
Check	for	session	fixation	 x	 		
Check	for	cross-site	request	forgery	 x	 #AP.8	
Check	cookie	scope	 x	 		

Access	controls	 x	
#AP.3	
#AP.7	

Understand	the	access	control	requirements	 x	 		
Test	effectiveness	of	controls,	using	multiple	accounts	 x	 		
Test	for	insecure	access	control	methods	(Referer,	etc)	 x	 		

	

	 	



	 TheHive	Pentest	Report	
	

	
CLASSIFICATION	:	PUBLIC	/	TLP	:	WHITE		 Page	19	of	20					c	

	
	

	

Test	handling	of	input	 checked	?	 vuln	
Fuzz	all	request	parameters	 x	 		
Test	for	SQL	injection	 x	 		
Identify	all	reflected	data	 x	 		
Test	for	reflected	XSS	 x	 #AP.2	
Test	for	HTTP	header	injection	 x	 		
Test	for	arbitrary	redirection	 x	 		
Test	for	stored	attacks	 x	 #AP.1	
Test	for	OS	command	injection	 x	 		
Test	for	path	traversal	 x	 		
Test	for	script	injection	 x	 		
Test	for	file	inclusion	 x	 		
Test	for	SMTP	injection	 x	 		
Test	for	native	software	flaws	(Bof,	integer	bugs,	format	strings)	 x	 		
Test	for	SOAP	injection	 x	 		
Test	for	LDAP	injection	 x	 		
Test	for	XPath	injection	 x	 		

	

Test	application	logic	 checked	?	 vuln	
Identify	the	logic	attack	surface	 x	 		
Test	transmission	of	data	via	the	client	 x	 		
Test	for	reliance	on	client-side	input	validation	 x	 		
Test	any	thick-client	components	(Java,	ActiveX,	Flash)	 x	 		
Test	multi-stage	processes	for	logic	flaws	 x	 		
Test	handling	of	incomplete	input	 x	 		
Test	trust	boundaries	 x	 		
Test	transaction	logic	 x	 		

	

Assess	application	hosting	 checked	?	 vuln	
Test	segregation	in	shared	infrastructures	 N/A	 		
Test	segregation	between	ASP-hosted	applications	 N/A	 		
Test	for	web	server	vulnerabilities	 N/A	 		
Default	credentials	 N/A	 		
Default	content	 N/A	 		
Dangerous	HTTP	methods	 N/A	 		
Proxy	functionality	 N/A	 		
Virtual	hosting	mis-configuration	 N/A	 		
Bugs	in	web	server	software	 N/A	 		

	

	 	



	 TheHive	Pentest	Report	
	

	
CLASSIFICATION	:	PUBLIC	/	TLP	:	WHITE		 Page	20	of	20					c	

	
	

	

Miscellaneous	tests	 checked	?	 vuln	
Check	for	DOM-based	attacks	 x	 		
Check	for	frame	injection	 x	 		
Check	for	local	privacy	vulnerabilities	 x	 		
Persistent	cookies	 x	 		
Caching	 x	 		
Sensitive	data	in	URL	parameters	 x	 		
Forms	with	autocomplete	enabled	 x	 		
Follow	up	any	information	leakage	 x	 		
Check	for	weak	SSL	ciphers	 N/A	 		

	

N/A:	Not	applicable	

	


